top of page

Atlanta Margarita + Taco Festival Group

Public·26 members


The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle fibre, expresses Fgf2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose their self-renewing capacity. We show in mice that relatively dormant aged satellite cells robustly express sprouty 1 (Spry1), an inhibitor of fibroblast growth factor (FGF) signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing Spry1 results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of Fgfr1 signalling or overexpression of Spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.


Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.

Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.

The blood-brain barrier (BBB) is composed of tightly bound endothelial cells (ECs) and perivascular astrocytes that regulate central nervous system (CNS) homeostasis. We showed that astrocytes secrete Sonic hedgehog and that BBB ECs express Hedgehog (Hh) receptors, which together promote BBB formation and integrity during embryonic development and adulthood. Using pharmacological inhibition and genetic inactivation of the Hh signaling pathway in ECs, we also demonstrated a critical role of the Hh pathway in promoting the immune quiescence of BBB ECs by decreasing the expression of proinflammatory mediators and the adhesion and migration of leukocytes, in vivo and in vitro. Overall, the Hh pathway provides a barrier-promoting effect and an endogenous anti-inflammatory balance to CNS-directed immune attacks, as occurs in multiple sclerosis.

Background & aims: Patients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells.

Results: After incubation with ATRA, PSCs were quiescent and had altered expression of genes that regulate proliferation, morphology, and motility; genes that encode cytoskeletal proteins and cytokines; and genes that control other functions, irrespective of culture conditions or dosage. In the organotypic model, and in mice, ATRA induced quiescence of PSCs and thereby reduced cancer cell proliferation and translocation of β-catenin to the nucleus, increased cancer cell apoptosis, and altered tumor morphology. ATRA reduced the motility of PSCs, so these cells created a "wall" at the junction between the tumor and the matrix that prevented cancer cell invasion. Restoring secreted frizzled-related protein 4 (sFRP4) secretion to quiescent PSCs reduced Wnt-β-catenin signaling in cancer cells and their invasive ability. Human primary and metastatic pancreatic tumor tissues stained strongly for cancer cell nuclear β-catenin but had low levels of sFRP4 (in cancer cells and PSCs).

Conclusions: RA induces quiescence and reduces motility of PSCs, leading to reduced proliferation and increased apoptosis of surrounding pancreatic cancer cells. RA isoforms might be developed as therapeutic reagents for pancreatic cancer.

Adult stem cells are maintained in a quiescent state but are able to exit quiescence and rapidly expand and differentiate in response to stress. The quiescent state appears to be necessary for preserving the self-renewal of stem cells and is a critical factor in the resistance of cancer stem cells (CSCs) to chemotherapy and targeted therapies. Limited knowledge about quiescence mechanisms has prevented significant advances in targeting of drug-resistant quiescent CSCs populations in the clinic. Thus, an improved understanding of the molecular mechanisms of quiescence in adult stem cells is critical for the development of molecularly targeted therapies against quiescent CSCs in different cancers. Recent studies have provided a better understanding of the intrinsic and extrinsic regulatory mechanisms that control stem cell quiescence. It is now appreciated that the p53 gene plays a critical role in regulating stem cell quiescence. Other intrinsic regulatory mechanisms include the FoxO, HIF-1α, and NFATc1 transcription factors and signaling through ATM and mTOR. Extrinsic microenvironmental regulatory mechanisms include angiopoietin-1, TGF-β, bone morphogenic protein, thrombopoietin, N-cadherin, and integrin adhesion receptors; Wnt/β-catenin signaling; and osteopontin. In this article, we review current advances in understanding normal stem cell quiescence, their significance for CSC quiescence and drug resistance, and the potential clinical applications of these findings.

Quiescence is essential for long-term maintenance of adult stem cells. Niche signals regulate the transit of stem cells from dormant to activated states. Here, we show that the E3-ubiquitin ligase Huwe1 (HECT, UBA, and WWE domain-containing 1) is required for proliferating stem cells of the adult mouse hippocampus to return to quiescence. Huwe1 destabilizes proactivation protein Ascl1 (achaete-scute family bHLH transcription factor 1) in proliferating hippocampal stem cells, which prevents accumulation of cyclin Ds and promotes the return to a resting state. When stem cells fail to return to quiescence, the proliferative stem cell pool becomes depleted. Thus, long-term maintenance of hippocampal neurogenesis depends on the return of stem cells to a transient quiescent state through the rapid degradation of a key proactivation factor.

Mosquitoes are insects belonging to the order Diptera and family Culicidae. They are distributed worldwide and include approximately 3500 species, of which about 300 have medical and veterinary importance. The evolutionary success of mosquitoes, in both tropical and temperate regions, is due to the various survival strategies these insects have developed throughout their life histories. Of the many adaptive mechanisms, diapause and quiescence, two different types of dormancy, likely contribute to the establishment, maintenance and spread of natural mosquito populations. This review seeks to objectively and coherently describe the terms diapause and quiescence, which can be confused in the literature because the phenotypic effects of these mechanisms are often similar.

Dormancy is a biological trait that may play an important role in the maintenance of natural populations and refers to a physiological phenomenon characterised by the interruption or reduction of metabolic activity in an organism. In mosquitoes, dormancy can occur at different stages of the life-cycle [18]. Diapause and quiescence represent different types of dormancy found in many species of mosquitoes. In this review, these terms are analysed for their conceptual principles and their respective delayed developmental effects; in addition, the mosquito species found to exhibit these phenomena will be noted.

Dormancy is a physiological phenomenon defined as a state of suspended development or suppressed metabolic activity in an organism [19]. Dormancy can occur in both plants and animals; in insects, it can manifest in the embryonic (pharate larvae), immature (larvae and pupae) and adult stages [18]. This phenomenon can be triggered by climactic signals, especially the photoperiod for temperate climate insects and relative humidity for tropical insects. This adaptation seeks to promote survival during and after unfavourable environmental conditions and is known in the literature as heterodynamic development [20]. In 1869, the term dormancy was first described as a period of inactivity caused by low temperatures by the French researcher Duclaux, who was studying silkworms (Bombyx mori) [20, 21]. According to a literature review by Danks [20] on the definitions and terminology of dormancy in insects, dormancy is divided into two major categories: diapause and quiescence. The terms diapause and quiescence have been reported to be synonymous in the literature [8, 22,23,24,25,26,27], but these survival strategies arise from distinct signalling pathways even though the strategies have the same goal: to ensure survival during and after environmental stress. 041b061a72


Welcome to the group! You can connect with other members, ge...
bottom of page